ISOXAZOLIN-5-ONE DERIVATIVES IN LATHYRUS ODORATUS DURING **DEVELOPMENT AND GROWTH**

Fumio Ikegami*, Fernand Lambein†, Yu-Haey Kuo and Isamu Murakoshi*

Laboratory for Physiological Chemistry, Faculty of Medicine, State University of Ghent, Ledeganckstraat 35, B-9000 Gent, Belgium; *Department of Plant Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, Chiba University, Yayoi-cho 1-33, Chiba 260, Japan

(Received 19 December 1983)

Key Word Index—Lathyrus odoratus; Leguminosae; sweet pea; non-protein amino acids; lathyrism; isoxazolin-5ones.

Abstract—Variations in the concentrations of isoxazolin-5-ones and of some non-protein amino acids in the dry seeds, seedlings and various parts of mature Lathyrus odoratus plants were examined. The lathyrogenic compounds α-aminoy-(isoxazolin-5-on-2-yl)-butyric acid, 2-cyanoethyl-isoxazolin-5-one and y-glutamyl-β-aminopropionitrile were major products during development and growth.

INTRODUCTION

Some legume seedlings belonging to the genera Pisum, Lathyrus and Lens, contain high concentrations of isoxazolin-5-one derivatives [1]. In sweet pea (Lathyrus odoratus) α-amino-y-(isoxazolin-5-on-2-yl)-butyric acid (1) can reach a concentration of 3.5% of the dry weight [1]. This product is metabolized to the neurolathyrogen, 2,4-diaminobutyric acid (DABA) in young chicks and can cause neurolathyrism [2]. In the same plant species 2cyanoethyl-isoxazolin-5-one (2) can reach a concentration of 0.8% of the dry weight. Compound 2 causes osteolathyrism in rats [3]. It is also a major constituent of the sweet pea seedlings exudate [4], and can be degraded to β aminopropionitrile (BAPN) [3].

In this paper we describe the variations in the concentrations of isoxazolin-5-ones, particularly the lathyrogenic compounds 1 and 2 in Lathyrus odoratus during development and growth.

RESULTS AND DISCUSSION

The variations in the concentrations of isoxazolin-5ones in seedlings of Lathyrus odoratus during the germination are given in Fig. 1 on a logarithmic scale. The concentrations of these compounds and of some other non-protein amino acids in different parts of the mature plant and in seedlings of different ages are given in Table 1.

Seedlings of Lathyrus odoratus contain β -(isoxazolin-5on-2-yl)-alanine (3), β -(2- β -D-glucopyranosyl-isoxazolin-5-on-4-yl)-alanine (4), 2-aminoethyl-isoxazolin-5-one (5) and its γ -glutamyl derivative (6), 1, 2 and 2- β -D-glucopyranosyl-isoxazolin-5-one (7). These different heterocyclic nitrogen compounds increased during 3 to 12 days growth and then gradually decreased (Fig. 1). Virtually no 3, 4, 5 and 7 were found in extracts of dry seeds and of 1day-old seedlings. Dry seeds contain low concentrations of 1 (0.006% of the dry weight) and 2 and 6 (both 0.001% of the dry weight).

During imbibition of the seeds, 2 leaks out of the seeds and is absent from imbibed seeds. In the extracts from 12day-old seedlings, 1 is the major free amino acid, making up 2.73% of the dry weight, while 3 (0.59%), 6 (0.64%)and 2 (0.09%) are present in lower concentrations.

Table 1 also gives the distribution of isoxazolin-5-ones and some other non-protein amino acids in different parts of L. odoratus at the flowering stage. The highest concentrations of the lathyrogens 1 and 2 are found in young seedlings, flower buds, petals and immature pods. In the roots, only 1 is a major constituent (together with smaller concentrations of 3, 6, 7 and y-glutamyl-BAPN). While the highest concentrations of 1 are found in young seedlings, the highest concentrations of 2 are found in the

	R ₁	R ₂
1	СH2-СH2-СН(NH2)-СООН	н
2	CH2-CH2-CN	н
3	CH2-CH(NH2)-COOH	н
4	8-D-glucopyranose CH ₂ -CH(NH ₂)	-соон
5	CH2-CH2-NH2	н
6	СН2-СН2-NHCO-СН2-СН2-СН(NH2)-СООН	н
7	B−D−glucopyranose	н

[†]To whom correspondence should be addressed.

Table 1. Variations in the concentrations of isoxazolin-5-one derivatives and some free amino acids in Lathyrus odoratus during development and

Plant organ	Comp. 1	Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5 Comp. 6 Comp. 7	Сотр. 3	Сотр. 4	Comp. 5	Comp. 6	Comp. 7	BAPN*	y-glutamyl- BAPN	Har*	GABA*
Dry seeds	0.26†	90.0	1		ŀ	90:0	I	0.39	2.92	89.9	0.07
3-day-old seedlings	7.35	1.79	5.92	0.17	++	1.05	2.18	1	12.86	0.98	0.33
7-day-old seedlings	12.83	0.95	5.26	0.18	+	2.45	2.64	ı	36.98	1	96.0
12-day-old seedlings	12.31	0.55	2.97	0.15	+	2.14	1.39	I	21.26	1	99.0
16-day-old seedlings	8.15	0.41	2.21	0.13	+	1.78	1.02	ŀ	20.70	I	0.48
21-day-old seedlings	9.65	0.27	1.70	0.11	+	1.52	0.77	1	15.87	I	0.30
Flower buds	1.23	4.66	I	I	+	0.46	I	1	3.93	1	1.20
Flower (no petals)	0.17	2.77	1	1	+	0.08	Ì	J	15.04	I	2.11
Petals	0.50	7.13	I	1	+	1		1	12.44	I	2.96
Immature pods	0.16	5.75	1	1	+	0.12	I	I	7.21	1	0.78
Immature seeds	0.95	0.99	l	I	+	0.20	ı	0.47	15.60	l	7.70
Flower stems	0.11	0.13	I	I	+	0.08	I	ļ	4.56	١	0.60
Stems	0.19	0.14	1	١	+	0.09	I	1	9.24	l	(0.92)
Leaves	0.20	69.0	ı	I	+	0.18	j	I	(5.88)	ļ	1.62
Roots	1.35	0.05	0.45	0.14	+	0.38	0.87	I	0.91	l	0.57

^{*}BAPN = β -aminopropionitrile; Har = homoarginine; GABA = 4-aminobutyric acid. †Concentrations of compounds were estimated by an automatic amino acid analyser as described in the Experimental and before [4] and are shown in µmol/g fresh weight.

^{‡+} stands for the presence of a compound when the peak was too small to be calculated.

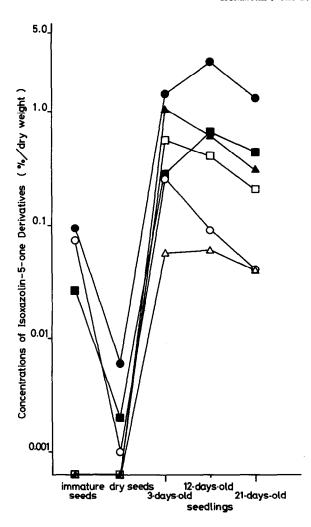


Fig. 1. Variations in the concentrations of isoxazolin-5-one derivatives in *Lathyrus odoratus* during development and growth. (●) Comp. 1; (○) Comp. 2; (△) Comp. 3; (△) Comp. 4; (■) Comp. 6; (□) Comp. 7.

petals and in the immature pods; in these parts the concentration of 2 on a fresh weight basis is about 10 times greater than in 12-day-old seedlings and ca 100 times greater than in the dry seeds.

In the immature seeds three lathyrogens: 1, 2 and γ -glutamyl-BAPN are major soluble compounds. During the ripening process 80% or more will disappear from the seeds. During germination the concentration of these three compounds again rises 10 to 20-fold.

In the flowering stage these compounds are present mainly in the reproductive parts of the plant. Other isoxazolin-5-one derivatives (3, 4, 5 and 7) are important

soluble compounds in the seedling stage and disappear in older plants.

Both 2 and γ -glutamyl-BAPN are toxic in experimental animals [5, 6] and can be regarded as bound forms of BAPN. Free BAPN has been reported to inhibit seed germination [7]. Compound 2 is present in the seedlings of about one fifth of the species in the genus *Lathyrus* [8] and in the sweet pea seedling root exudate [4]. From our results it seems likely that these compounds may play a role in the chemical ecology of the genus *Lathyrus*. An unknown acidic isoxazolin-5-one derivative was also found in the immature seeds and pods.

EXPERIMENTAL

Plant materials. Sweet pea (Lathyrus odoratus L. cv Spencer) seeds were germinated in the dark at 25–26°. After 1, 3, 7, 12, 16 or 21 days, the seedlings were collected (cotelydons removed), ground with a chilled mortar and pestle and then extracted with 70% EtOH overnight at 2–4°. Sweet pea seeds were also grown in our botanical garden and collected at the flowering stage in October, 1981.

Determination of isoxazolin-5-ones and some free amino acids. The 70% EtOH extracts were concd in vacuo to 2 ml and then examined by 2-D TLC using n-BuOH-HOAc-H₂O (12:3:5) in one direction and PhOH-H₂O (80% by wt) in the other, and by using an automated amino acid analyser (JEOL, model JLC-5AH) coupled to a UV-monitoring flow system (JEOL) with detection at 260 nm according to the method of ref. [4].

Identification of homoarginine. The presence of homoarginine was confirmed also by HPLC of the o-phthalaldehyde derivatives with fluorescence detection after partial purification and separation from lysine by PC. After hydrolysis in 2.5 M LiOH at 105° for 18 hr the formation of lysine was shown by 2-D TLC, automated amino acid analysis and by HPLC.

Acknowledgements—This work was supported by a scholarship from the Belgian 'Ministry of National Education and Dutch Culture' to F.I. and by a grant from the 'Nationaal Fonds voor Wetenschappelijk Onderzoek' to F.L.

REFERENCES

- Lambein, F., Kuo, Y. H. and Van Parijs, R. (1976) Heterocycles 4, 567.
- Lambein, F. and De Vos, B. (1981) Arch. Int. Physiol. Biochim. 89. B66.
- Van Rompuy, L., Lambein, F., Van Parijs, R. and Ressler, C. (1974) Experientia 30, 1379.
- Kuo, Y. H., Lambein, F., Ikegami, F. and Van Parijs, R. (1982) Plant Physiol. 70, 1283.
- 5. Bell, E. A. (1980-81) Food Chem. 6, 213.
- Janzen, D. H., Juster, H. B. and Bell, E. A. (1977) Phytochemistry 16, 223.
- 7. Wilson, M. F. and Bell, E. A. (1978) Phytochemistry 17, 403.
- 8. Ikegami, F., De Blauwe, M. and Lambein, F. (1981) Arch. Int. Physiol. Biochim. 89, B174.